
Advanced Middleware:
MPI & Interactivity

Grids & e-Science 2009
UIMP, Santander

Enol Fernández del Castillo
Instituto de Física de Cantabria

Outline

• Introduction

• MPI

• PACX-MPI

• MPI-START

• CrossBroker

– Parallel jobs

– Interactivity with i2glogin

2Grids & e-Science 2009. UIMP. Santander

Batch Execution on Grids

Resource Resource

Middleware Middleware

User
Interface

Global
Services

Job

Inp. files

Grid
Scheduler

3Grids & e-Science 2009. UIMP. Santander

Batch Execution on Grids

Resource Resource

Middleware Middleware

User
Interface

Global
Services

Job

Inp. files

Grid
Scheduler

4Grids & e-Science 2009. UIMP. Santander

Batch Execution on Grids

Resource Resource

Middleware Middleware

User
Interface

Global
Services

Job

Inp. files

Grid
Scheduler

5Grids & e-Science 2009. UIMP. Santander

Batch Execution on Grids

Resource Resource

Middleware Middleware

User
Interface

Global
Services

Grid
Scheduler

Output
files

6Grids & e-Science 2009. UIMP. Santander

But…

• Users need more computing power:

– Using more than one core for execution

– Or even more than one site for execution

• Users need to interact with the application:

– Monitoring the output of the app

– Or even changing the behavior of the app while it
is running

7Grids & e-Science 2009. UIMP. Santander

Parallel Jobs

• Parallel jobs use more than one core… how to
use all the cores efficiently?

– Shared memory: all cores access a common data
area

– Message Passing: cores interchange messages
with the data

• MPI (Message Passing Interface) provides a
standard interface for programming parallel
jobs

8Grids & e-Science 2009. UIMP. Santander

MPI

• Defines uniform and standard API (vendor neutral) for
message passing

• Allows efficient implementation
• Provides C, C++ and Fortran bindings
• Several MPI implementations available:

– From hardware providers (IBM, HP, SGI….) optimized for their
systems

– Academic implementations

• Most extended implementations:
– MPICH (from ANL/MSU), includes support for a wide range of

devices (even using globus from communication)
– Open MPI (join effort from FT-MPI, LA-MPI, LAN/MPI and PACX-

MPI developers): modular implementation that allows the use
of advanced hardware during runtime

9Grids & e-Science 2009. UIMP. Santander

MPI-1 & MPI-2

• MPI-1 standard includes:
– Point to point communication
– Collective operations
– Process groups and topologies
– Communication contexts
– Datatype Management

• MPI-2 adds:
– Dynamic Process Management
– File I/O
– One Sided Communicactions
– Extension of Collective Operations

10Grids & e-Science 2009. UIMP. Santander

Processes

• Every MPI job consist of N processes

– 1 <= N , N == 1 is valid

• Each process in a Job could execute a different
binary

– In general it's always the same binary which
executes different code path based on the process
number

• Processes are included in groups

11Grids & e-Science 2009. UIMP. Santander

Grids & e-Science 2009. UIMP. Santander

group X

Groups

• A group is an ordered set of processes

• Every process in a group has an unique rank
inside the group

– From 0 to #PROCS -1

– Processes can have different ranks in different
groups

• Groups are defined with MPI Communicators

A

0 1 2

group Z

C B

0 1 12

CB

Hello World

#include <mpi.h> /* for MPI functions */

#include <stdio.h> /* for printf */

int main(int argc, char *argv[] {

int rank = 0, size = 0;

MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello my rank is %i of %i\n", rank, size);

MPI_Finalize();

return 0;

}

13Grids & e-Science 2009. UIMP. Santander

Compiling

• Basics
– C programs have to include mpi.h

– Fortran programs include mpif.h

– All MPI functions/symbols prefixed with “MPI_”

• Compiling/Linking is implementations specific
– Most of them provide wrapper compilers

– mpicc, mpicxx, mpif90… add required flags and
libraries

– Just use mpicc instead of gcc:

mpicc –o hello hello.c

14Grids & e-Science 2009. UIMP. Santander

Hello World

• MPI_Init
– initialize the MPI system

– must be called before any other MPI function can be called

• MPI_Comm_size
– return the number of processes in the processes group

– MPI_COMM_WORLD is a default group with all processes

• MPI_Comm_rank
– return the rank of the current process in the group

• MPI_Finalize
– Shutdown the MPI system

– After this call MPI must not be called

15Grids & e-Science 2009. UIMP. Santander

Hello World

#include <mpi.h> /* for MPI functions */

#include <stdio.h> /* for printf */

int main(int argc, char *argv[] {

int rank = 0, size = 0;

MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello my rank is %i of %i\n", rank, size);

MPI_Finalize();

return 0;

}

16Grids & e-Science 2009. UIMP. Santander

Hello my rank is 2 of 5
Hello my rank is 1 of 5
Hello my rank is 0 of 5
Hello my rank is 4 of 5
Hello my rank is 3 of 5

Communication between processes

• Two types of processes communication:
– Point-to-point: the source process knows the rank

of the destination process and sends message
directed to it.

– Collective: all the processes in the group are
involved in the communication.

• Most functions are blocking. That is: the
process waits until it has received completely
the message.

17Grids & e-Science 2009. UIMP. Santander

Point-to-point

• MPI_Send:

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

– When MPI_Send return it means that the user can safely re-use
the buffer, but not that the send operation already completed of
even that the remote process received the data

• MPI_Recv:

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, i
nt tag, MPI_Comm comm, MPI_Status *status)

– When MPI_Recv return the data has been received into the specified
buffer (check status for possible errors)

18Grids & e-Science 2009. UIMP. Santander

Point-to-point: ring example

#include <mpi.h>

#include <stdio.h>

int main(int argc, char *argv[]) {

MPI_Status status;

MPI_Request request;

int rank = 0, size = 0;

int next = 0, prev = 0;

int data = 0;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

prev = (rank + (size­1)) % size;

next = (rank + 1) % size;

MPI_Send(&rank, 1, MPI_INT, next, 0, MPI_COMM_WORLD);

MPI_Recv(&data, 1, MPI_INT, prev, 0, MPI_COMM_WORLD, &status);

printf("%i received %i\n", rank, data);

MPI_Finalize();

return 0;

}

0 1 2

19Grids & e-Science 2009. UIMP. Santander

Point-to-point

• Non blocking:

– MPI_Isend/MPI_Irecv

• return as fast as possible,
– Operation already finished

– Operation is on going

– Operation not even started

• return a request to be used for testing of the
completion of the operation

int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm, MPI_Request *request);

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request);

20Grids & e-Science 2009. UIMP. Santander

Point-to-point

• Checking status:

– MPI_Wait: return when the operation is complete

– MPI_Test: non-blocking version of MPI_Wait

int MPI_Wait(MPI_Request *req, MPI_Status *st)

int MPI_Test(MPI_Request *req, int *flag, MPI_Status *st)

MPI_Send(next,…)
MPI_Recv(prev,…)

MPI_ISend(next,…)
MPI_IRecv(prev,…)
MPI_Wait

21Grids & e-Science 2009. UIMP. Santander

Collective Operations

• MPI provides several collective operations

– All processes of a communicators have to call it

– Rapid software development

• User does not have to implement the algorithms again

– Better performance

• Allows the implementation to exploit system specific
features

• The implementation can select the best possible
algorithm for the operation

22Grids & e-Science 2009. UIMP. Santander

Collective Operations

23Grids & e-Science 2009. UIMP. Santander

Collective Operations: Reduce

• MPI_Reduce:

– Applies one OP on the input buffer of all processes
and stores result in the output buffer on the root
processes

– Predefined operations

• MPI_MIN/MPI_MINLOC/MPI_MAX/MPI_MAXLOC

• MPI_SUM/MPI_PROD

• MPI_LAND

• …

– User defined operations

24Grids & e-Science 2009. UIMP. Santander

Collective Operations Example

25Grids & e-Science 2009. UIMP. Santander

int main(int argc,char *argv[])
{

int n, myid, numprocs, i;
double mypi, pi, h, sum, x;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

n = 10000; /* default # of rectangles */

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);
sum += 4/(1+x*x);

}
mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0) {
printf("pi is approximately %.16f\n", pi);

}

MPI_Finalize();
return 0;

}

MPI-2

• Parallel I/O
– Allows several process to access data (read or write)

from a common file

– High performance

• DPM (Dynamic Process Management)
– Supports the creation of new processes during

runtime and communicate with them

• One sided operations
– Remote Memory Access

– Can provide good performance on hardware
paltforms with this kind of communication
(Infiniband, Myrinet)

26Grids & e-Science 2009. UIMP. Santander

Pacx MPI

• Middleware to run MPI applications on a network
of parallel computers
– Starts MPI jobs in each cluster
– PACX merges them into a bigger/unique MPI job

• PACX conforms to the MPI standard
– Applications just need to be recompiled!

Grids & e-Science 2009. UIMP. Santander 27

Cluster 1
Open MPI (job)

Cluster 2
Open MPI (job)

PACX MPI (job)

Application

Pacx MPI communication

• Pacx-MPI maps the MPI ranks of the big job to the MPI
processes running on each cluster

• Pacx-MPI maps 2 additional “hidden” processes on the
local MPI jobs for external communication
– Rank 0 of the local MPI jobs is always the “out” daemon

– Rank 1 of the local MPI jobs is always the “in” daemon

Grids & e-Science 2009. UIMP. Santander 28

CE

W
o

rk
e
r

N
o

d
e
s

W
o

rk
e
r N

o
d

e
s

CE

35

24

2

3

4

5

Pacx MPI communication

– Internal Communication
• Communication between processes running inside the same local

cluster is performed via the local, optimized MPI implementation

– External Communication
• Send message to “out” daemon using local MPI
• “out” daemon send message to destination host over the network

using a protocol (TCP)
• The “in” daemon send message to destination using local MPI

Grids & e-Science 2009. UIMP. Santander 29

CE

W
o

rk
e
r

N
o

d
e
s

W
o

rk
e
r N

o
d

e
s

CE

35

24

2

3

4

5

Executing MPI (on the Grid)

• There is no standard way of starting an MPI application
– No common syntax for mpirun, mpiexec support optional

• The cluster where the MPI job is supposed to run doesn't have a shared
file system
– How to distribute the binary and input files?
– How to gather the output?

• Different clusters over the Grid are managed by different Local Resource
Management Systems (PBS, LSF, SGE,…)
– Where is the list of machines that the job can use?
– What is the correct format for this list?

• How to compile MPI program?
– How can a physicist working on Windows workstation compile his code

for/with an Itanium MPI implementation?

30
Grids & e-Science 2009. UIMP. Santander

Grids & e-Science 2009. UIMP. Santander

MPI-START

• Specifies a unique interface to the upper layer in the
middleware to describe MPI jobs

• Support basic file distributions
• Implemented as portable shell scripts
• Extensible via user hooks and plugins at the site level
• User specifies the job characteristics using env

variables

CORE

MPI Scheduler Hooks

O
p

en
 M

P
I

M
P

IC
H

2

M
P

IC
H

PA
C

X

LA
M

P
B

S

SG
E

LS
F

31

MPI-START variables

• Interface Intra Cluster MPI:

– I2G_MPI_APPLICATION:

• The executable

– I2G_MPI_APPLICATION_ARGS:

• The parameters to be passed to the executable

– I2G_MPI_TYPE:

• The MPI implementation to use (e.g openmpi, ...)

– I2G_MPI_VERSION:

• Specifies which version of the the MPI implementation
to use. If not defined the default version will be used

32Grids & e-Science 2009. UIMP. Santander

MPI-START variables

• Interface Intra Cluster MPI
– I2G_MPI_PRECOMMAND

• Specifies a command that is prepended to the mpirun (e.g.
time).

– I2G_MPI_PRE_RUN_HOOK
• Points to a shell script that must contain a “pre_run_hook”

function.

• This function will be called before the parallel application is
started (usage: compilation of the executable)

– I2G_MPI_POST_RUN_HOOK
• Like I2G_MPI_PRE_RUN_HOOK, but the script must define a

“post_run_hook” that is called after the parallel application
finished (usage: upload of results).

33Grids & e-Science 2009. UIMP. Santander

34

MPI-START invocation

[imain179@i2g-ce01 ~]$ cat test2mpistart.sh
#!/bin/sh
This is a script to show how mpi-start is called

Set environment variables needed by mpi-start
export I2G_MPI_APPLICATION=/bin/hostname
export I2G_MPI_APPLICATION_ARGS=
export I2G_MPI_NP=2
export I2G_MPI_TYPE=openmpi
export I2G_MPI_FLAVOUR=openmpi
export I2G_MPI_JOB_NUMBER=0
export I2G_MPI_STARTUP_INFO=/home/imain179
export I2G_MPI_PRECOMMAND=time
export I2G_MPI_RELAY=
export I2G_MPI_START=/opt/i2g/bin/mpi-start

Execute mpi-start
$I2G_MPI_START

[imain179@i2g-ce01 ~]$ cat test2mpistart.sh.o114486
Scientific Linux CERN SLC release 4.5 (Beryllium)
Scientific Linux CERN SLC release 4.5 (Beryllium)
lflip30.lip.pt
lflip31.lip.pt

[imain179@i2g-ce01 ~]$ qsub -S /bin/bash -pe openmpi 2 -l
allow_slots_egee=0 ./test2mpistart.sh

[lflip31] /home/imain179 > cat test2mpistart.sh.e114486
Scientific Linux CERN SLC release 4.5 (Beryllium)
Scientific Linux CERN SLC release 4.5 (Beryllium)
real 0m0.731s
user 0m0.021s
sys 0m0.013s

The submission (in SGE):

The StdOut:

The StdErr:

The script:

• MPI commands are transparent to the user
– No explicit mpiexec/mpirun instruction

– Start the script via normal LRMS submission

Grids & e-Science 2009. UIMP. Santander

Submitting MPI app to the Grid

• Definition of the job requirements
– Need for JDL extensions that allow the user to express their job characteristics

• Check if the site supports the MPI implementation
– Usually published in the site-BDII (lcg-info magic)
– Need a service that checks this transparently for the user

• Select and use resources from different administrative domains
– No reservation or control over the resources
– Need a service that handles automatically co-allocation and selects the best

resources

• Start the job on the sites
– Find MPI-START or download to the site, set properly the variables
– Need a service that is able to do this for the user (and allows advanced users

to enhance it)

35Grids & e-Science 2009. UIMP. Santander

CrossBroker

• CrossBroker is a metascheduler that provides
automatic execution of interactive and parallel
applications on grid (gLite based) environments

– Transparent

– Flexible modular components

• Leverages existing developments:

– Fork from EDG-RB + gLite WMS

– Condor

– C++, perl, python and shell script

36Grids & e-Science 2009. UIMP. Santander

CrossBroker architecture

CrossBroker

User
Interface

Information
Index

Replica
Location
Service

Computing
Element

Scheduling
Agent

Resource
Searcher

Application
Launcher

Job
Starter

Interactive
Agent

Selection Policies:
• Close to files resources
• Best Fit policy for intra-cluster
• Sets with smaller number of

resources for inter-cluster

• Asynchronously updated
•Several sources of

information
• Considers jobs and

resources characteristics

Provide flexible start up for jobs
Written as a shell script
Easily modified for new
applications
MPI-START is automatically used

37Grids & e-Science 2009. UIMP. Santander

JDL: Normal jobs

Type = "Job";

JobType = "Normal";

Executable = "my_app";

Arguments = "-n 356 -p 4";

StdOutput = "std.out";

StdError = "std.err";

InputSandBox = {"my_app"};

OutputSandBox = {"std.out", "std.err"};

Requirements =

other.GlueHostBenchmarkSI00 >= 1000;

Rank = other.GlueHostFreeCPUs;

38Grids & e-Science 2009. UIMP. Santander

JDL: Parallel jobs

Type = "Job";
JobType = "Parallel";
NodeNumber = 23;
SubJobType = "openmpi";
Executable = "my_app";
Arguments = "-n 356 -p 4";
StdOutput = "std.out";
StdError = "std.err";
InputSandBox = {"my_app"};
OutputSandBox = {"std.out", "std.err"};
Requirements = other.GlueHostBenchmarkSI00 >= 1000;
Rank = other.GlueHostFreeCPUs;

openmpi
mpich
mpich-g2
pacx-mpi

39Grids & e-Science 2009. UIMP. Santander

Set-matching

Executable = "testMpi";
JobType = "Parallel";
SubJobType = "pacx-mpi";
NodeNumber = 5;
StdOutput = "testMpi.out";
StdError = "testMpi.err";
Requirements =

other.GlueCEInfoLRMSType == "pbs";
Rank = other.GlueHostBenchmarkSI00;
InputSandbox = {"testMpi"};
OutputSandbox = {"testMpi.out", testMpi.err"};

40Grids & e-Science 2009. UIMP. Santander

Set-matching

[Groups with 1 CEs]

[Rank=2000]

aocegrid.uab.es:2119/jobmanager-pbs-workq

freeCPUs = 10

[Groups with 2 CEs]

[Rank=1500]

zeus.cyf-kr.edu.pl:2119/jobmanager-pbs-workq

freeCPUs = 2

bee001.ific.uv.es:2119/jobmanager-pbs-workq

freeCPUs = 3

[Rank=1000]

bee001.ific.uv.es:2119/jobmanager-pbs-workq

freeCPUs = 3

lngrid02.lip.pt:2129/jobmanager-pbs-workq

freeCPUs = 2

CE

CE4= xgrid.icm.edu.pl

FreeCPUs = 6

Disk = 100

AverageSI = 1000

CE

CE2=aocegrid.uab.es

FreeCPUs = 10

Disk = 100

AverageSI = 4000

CE

CE3=bee001.ific.uv.es

FreeCPUs = 3

Disk = 100

AverageSI = 1000

CE

CE1=zeus.cyf-kr.edu.pl

FreeCPUs = 2

Disk = 100

AverageSI = 2000

RS

MPI enabled CE

Non-MPI enabled CE

CE

CE5=lngrid02.lip.pt

FreeCPUs = 2

Disk = 100

AverageSI = 1000

[Groups with 1 CEs]

[Rank=2000]

aocegrid.uab.es:2119/jobmanager-pbs-workq

freeCPUs = 10

[Rank=1500]

zeus.cyf-kr.edu.pl:2119/jobmanager-pbs-workq

freeCPUs = 2

bee001.ific.uv.es:2119/jobmanager-pbs-workq

freeCPUs = 3

Rank=1000]

lngrid02.lip.pt/jobmanager-pbs-workq

freeCPUs = 2

bee001.ific.uv.es:2119/jobmanager-pbs-workq

freeCPUs = 3
41Grids & e-Science 2009. UIMP. Santander

42

Executing PACX job

Info
Index

Replica
Manager

SERVICES

Cross

Broker

WNWN

Internet

gLite

MPI-START Invocation
UI

LRMS

CE CE

gLite

LRMS

MPI-STARTMPI-START

Open MPI

StartupServer

Open MPIPacx-MPI

JDL: Parallel jobs

Type = "Job";
JobType = "Parallel";
NodeNumber = 23;
SubJobType = "plain";
JobStarter = "my-starter.sh"
JobStarterArguments = "-foo –bar"
Executable = "my_app";
Arguments = "-n 356 -p 4";
StdOutput = "std.out";
StdError = "std.err";
InputSandBox = {"my_app"};
OutputSandBox = {"std.out", "std.err"};
Requirements = other.GlueHostBenchmarkSI00 >= 1000;
Rank = other.GlueHostFreeCPUs;

43Grids & e-Science 2009. UIMP. Santander

Advanced users
can tune the
environment to
fit their needs

• Interactivity allows researchers to visualize
results and obtain them faster

• Requirements:

– Fast startup: the possibility of starting the
application immediately, even in high occupancy
scenarios

– Online Input-Output streaming: the ability to have
application input and output online.

Interactivity Support

44Grids & e-Science 2009. UIMP. Santander

Interactive Agents

• “Traditional” remote interactivity tools: VNC, ssh
are not directly applicable to grids

• glogin/i2glogin is able to create communication
channels from the WN to the user

– Interactive GSS secured Grid-shells

– TCP tunnels

– Posix pipes

– VPN support

– Integrated with other interactivity/visualization tools

Grids & e-Science 2009. UIMP. Santander 45

JDL: Interactive jobs

46

Type = "Job";
VirtualOrganisation = "imain";
JobType = "Parallel";
SubJobType = “openmpi";
NodeNumber = 11;
Interactive = TRUE;
InteractiveAgent = “i2glogin“;
InteractiveAgentArguments = “-r –p 195.168.105.65:23433“;
Executable = "test-app";
InputSandbox = {"test-app", "inputfile"};
OutputSanbox = {"std.out", "std.err"};
StdErr = "std.err“;
StdOutput = "std.out";
Rank = other.GlueHostBenchmarkSI00 ;
Requirements = other.GlueCEStateStatus == "Production";

Grids & e-Science 2009. UIMP. Santander

• The idea
– Each job is encapsulated in an agent that takes control

over the WN independently of its LRMS

• Lightweight “Virtual Machines”
– Each Worker Node is divided in 2 execution slots
– Each VM can execute jobs independently (e.g. batch

and interactive)
– NOT a full virtual machine (Xen, VMWare,…)
– NO need for special priviledges in the WN

Multiprogramming

47Grids & e-Science 2009. UIMP. Santander

Multiprogramming

CrossBroker

WN

LRMS

Computing
Element

Job

Grid Resource

48Grids & e-Science 2009. UIMP. Santander

Multiprogramming

CrossBroker

Grid Resource

WN

LRMS

Computing
Element

Slot 1 Slot 2

JobAgentJob

< 40s

> 200s

49Grids & e-Science 2009. UIMP. Santander

CrossBroker
User

Interface

Interactive Agents

glogin

Connection parameters:
• IP address
• Port

glogin

User
Application

Worker Nde

Slot 1 Slot 2

glogin

User
App.

Batch

50Grids & e-Science 2009. UIMP. Santander

What about gLite/EGEE?

• Broken support for MPI until latest production version of
WMS
– MPICH job type with hardcoded parameters
– Support only for specific LRMS

• Now you can submit parallel jobs specifying
Jobtype=“Normal” + NodeNumber, but…
– MPI-START has to be configured by the user
– No requirement checking done at matchmaking time

• A big amount of the sites do not provide support for MPI
• If you want to use interactivity:

– No automatic setup of the agent
– No prioritization of the jobs

Grids & e-Science 2009. UIMP. Santander 51

Questions?

Grids & e-Science 2009. UIMP. Santander 52

