

COOPEUS Carbon Use Case WP6 (Biodiversity) perspective (AGU Fall Meeting 2014 15th December 2014)

Fernando Aguilar, Jesus Marco (CSIC) presented by Jesus Marco (marco@ifca.unican.es) Instituto de Física de Cantabria (IFCA), CSIC, NATIONAL RESEARCH COUNCIL SANTANDER, SPAIN

Disclaimer: we mainly work with/on computers...

Approach from WP6

- Introduce the use case describing the challenge of analyzing a model for the phenological observations, and the interest to solve it.
- Compare the different sources of phenology observations, as well as the technical issues like different formats, conventions or quality assurance methods, employed in US and EU. Describe the methods used to access data.
- Layout for an integration and data assimilation, where a central piece is the integration of the CLM.
- Understand the potential gaps existing using an "scale/systemic" approach (at the leaf level, at the plant level, at the local ecosystem level, etc.)
- Deployment of a VCoP (Virtual Community of Practice) where new ideas based on new observations, software or platforms, that could improve our understanding, could be explored.

Phenology data in EU

- PEP725 is a project funded by ZAMG, the Austrian ministry for science & research and EUMETNET (the network of European meteorological services) - with the goal to establish an open access database with plant phenology data sets for science, research and education.
- OBJECTIVE: to promote and facilitate phenological research by delivering a pan European phenological database with an open, unrestricted data access for science, research and education
- 20 European meteorological services and 7 partners from different phenological network operators have joined PEP725.

Phenology data in EU (II)

- Around 100 species tracked with historical series
- methodology: Kock et al 2009 Guidelines for Plant Phenological Observations, WMO tech. comm. For Climatology, OPAG2
- Monitoring principles:

http://www.wmo.int/pages/prog/gcos/documents/GCOS_Climate_Monitoring_Pri nciples.pdf

Principal Growth Stages	Description
0	Germination / sprouting / bud development
1	Leaf development (main shoot)
2	Formation of side shoots / tillering
3	Stem elongation or rosette growth / shoot development (maninshoot)
4	Development of harvestable vegetative plant parts or vegetatively propagated organs / booting (main shoot)
5	Inflorescence emergence (main shoot) / Heading
6	Flowering (main shoot)
7	Development of fruit
8	Ripening or maturity of fruit and seed
9	Senescence beginning of dormancy
Principal	Growth stags of plants, Meier, 1997)

Analysis example

- Process-based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe"
- By Cecilia Olsson and Anna Maria Jonsson, Lund University, in Global Change Biology, 2014, 20, 3492-3507
- Phenology data: pep725 data on:
 - Betula pendula (Birch), leaf unfolding on the first visible leaf stalk (BBCH11)
 - Picea abies (Norway spruce), first leaves separated (BBCH10)

Example: data access

Example: Picea Abies

PEP_ID	National_ID	LON	LAT	ALT	NAME
19525	1	158.666	44.8	246	Bihac
19526	2	17.45	44.05	562	Bugojno
19527	5	18.433	43.866	560	Ilidza
19528	4	17.8	433.333	99	Mostar
19529	3	186.833	445.333	305	Tuzla
20454	6	184.228	438.678	630	Sarajevo

	1	195
bbch description		195
0Sowing		195
7Beginning of sprouting		195
10First leaves seperated (mouse ear)		195
11Leaf unfolding (first visible leaf stalk)		195
13Leaf unfolding (50%)		195
14Leaf unfolding (4.true leaves, leaf pairs or whoris unfolded)		195
15Leaf unfolding (5.true leaves, leaf pairs or whoris unfolded)		195
31 First node just above surface detectable		195
39 maximum stern length or rosette diameter reached)		195
Maximum of total tuber mass reached, tubers detach easily		195
from stolons, skin set not yet complete (skin easily		195
48 removable with thumb)		195
Skin set complete: (skin at apical end of tuber not removable		195
49with thumb) 95% of tubers in this stage		195
51First flower buds visible		105
55Middle of heading: half of inflorescence emerged		105
59End of heading: inflorescence fully emerged		195
60Beginning of flowering		190
61Flowering 10% (male)		193
62beginning of flowering, 20% of flowers open		105
30% of flowers open, maize:male:beginning of pollen	WP6	(<mark>Biodi</mark>
		1/5

PEP_ID	BBCH	YEAR	DAY	
19528	10	1971	87	
19527	10	1971	110	
19528	10	1972	77	
19527	10	1972	108	
19528	10	1973	82	
19527	10	1973	121	
19528	10	1974	71	
19527	10	1974	101	
19529	10	1977	98	
19527	10	1977	98	
19528	10	1978	110	
19529	10	1978	129	
19528	10	1979	127	
19527	10	1979	140	
19525	10	1979	145	
19528	10	1980	93	
19527	10	1980	126	
19528	10	1981	83	
19527	10	1981	128	
19528	10	1982	91	
19529	10	1982	128	
19527	10	1982	132	
19529	10	1983	115	
19527	10	1983	128	
19525	10	1984	315	
19529	10	1985	118	
19529	11	2001	113	
219529	rcity ⁶⁰	2001	135	
JU19529	r srty ₁₁	2002	113	

9

COOPEUS Other initiatives Global Phenological Monitoring

 The Global Phenological Monitoring Programme (GPM) is coordinated by the <u>Humboldt-University</u> of <u>Berlin</u>.

It is an initiative of the Phenology Study Group of the International Society of Biometeorology <u>http://www.biometeorology.org/</u>.

Phenological Observations will be done in special GPM-gardens throughout the world between approximately 35°N to the Arctic Circle and southern tropics to 50°S.

In these gardens a standard programme (fruit trees) and an extended programme (ornamental shrubs) will be observed. Not all species in the programme can grow at each site. The number of observed species in a garden depends mainly on the local climate conditions. Phenological observations will be done by:

Professional observers,

Schools subscribed to the Global Phenology Garden of the GLOBE Programme (Global Learning and Benefit the Environment), and Volunteers.

In the vicinity of each GPM-Garden a meteorological station should be located.

EARTH & LIFE INSTITUTE

LifeWatch Wallonie-Bruxelles

presented by Inès Moreau Vienna, April the 29th 2014

Prs P. Defourny, J. Radoux, C. Rousseau, Th.

De Maet, C. Lamarche and A. Verhegghen

Université catholique de Louvain

Science European Infrastructure for Biodiversity and Ecosystem Research

Vegetation profiles are very useful for ecosystem dynamics

- NDVI is a widely used vegetation index
- Smoothing of the time series remains
 necessary

 Smoothing filter (Whittaker) implemented

CL – Earth & Life Institute

E-Science European Infrastructure for Biodiversity and Ecosystem Research

Metrics are extracted from smoothed profiles

E-Science European Infrastructure for Biodiversity and Ecosystem Research

Overview of the growing season at European scale

http://www.lifewatch.eu/ecosystem-phenology http://maps.elie.ucl.ac.be/lifewatch/geoviewer.html

JCL – Earth & Life Institute \cdot

E-Science European Infrastructure for Biodiversity and Ecosystem Research

Potential contribution to COOPEUS

- Data could be provided before official release
 - Long term average
 - Standard deviation on the long term average → Global
 - Metrics
 - Number, start(s), end(s) of vegetation periods
 - Maximum and minimum NDVI
 - → Pan-European

CLM Community Land Model

- The Community Land Model is the land model for the <u>Community Earth System Model</u> (CESM) and the <u>Community</u> <u>Atmosphere Model (CAM)</u>
- CLM have been installed in our Supercomputer Altamira, as part of (latest) CESM 1.2 version).
- Some tests: configuring model, dependencies, etc.
- I/O Data Format: NetCDF

COOPEUS

How to support a VCoP

- How to start a Virtual Community of Practice (VCoP) ?
 - At the meeting organized during EGU General Assembly 2014 in Vienna (Austria), we met Jesús Marco (WP6 responsible and meeting convener, IFCA-CSIC), Fernando Aguilar (IFCA-CSIC), Francisco Bonet, Ramón Pérez, Penélope Serrano (UGr, Observatorio de Sierra Nevada from LifeWatch-ES), Inès Moreau (UCL-Earth&Life Institute, LifeWatch-BE), Lindsay Powers, Hank Loescher, Claire Lunch (NEON), Ladislav Sigut (CzechGlobe, ICOS).
 - Next session at EGU, also WP3 and COOPEUS, and next one at COOPEUS Annual Meeting,
 - At AEMET meeting in Spain: AEMET people and the network of phenology observers, and also pep725
 - At LifeWatch Spain: interest of REDIAM and University of Cordoba (Carmen Galan) and team...
 - At this AGU Fall Meeting, new contacts!
 - **Looking to literature: papers on phenology and global change (Global Change papers and references therein)**
 - Wide related area: Remote sensing
 - Interest from Poland: phenocam installed

How to support a VCoP (II)

- How to support a "community"? Phenology could be a nice example
 - Understand current community tools
 - Understand potential gaps
- We have started to explore the VIVO Tool:

How to support a VCoP (II)

• We have started to explore the VIVO Tool:

People ⁴¹ Publications Organizations Activities Events ¹ Courses Equipment	
9 results	Results by Institution
Phenology , distribution, and host specificity of Solenopsis invicta virus-1. Oi, David H Phenology , distribution, and host specificity of Solenopsis invicta virus-1. Vander Meer,	University of Florida 5
Robert K Phenology, distribution, and host In University of Florida	Cornell University
Host plant selection, larval survival, and reproductive phenology in Megathymus yuccae (Lepidoptera: Hesperiidae).	 ♥ Indiana University ● Ponce School of Medicine
Pence, J A Host plant selection, larval survival, and reproductive phenology in Megathymus yuccae (Lepidoptera: Hesperiidae). Daniels, J C Host IF University of Florida	 The Scripps Research Institute WashU in St. Louis
Phenology, within-vineyard distribution and seasonal movement of eastern grape leafbopper (Homoptera: Cicadellidae) in New York vineyards	School of Medicine

How to support a VCoP (III)

- We have installed a test VIVO node
- We believe it can be a good idea to explore
 - Experts
 - Papers. Projects, Events!
 - Instruments...Models!
 - ONTOLOGIES are needed
 - Then relationships can be created (like researchers using same model)
- We need to confront with other existing tools in EU
 - mostly related to Open Access, like ORCID
 - IN CSIC, SPAIN, DIGITAL.CSIC ALLOWS OUR PRODUCTION TO BE OPEN/ONLINE...
- OF COURSE, KEY PROBLEM, WHO FILLS AND UPDATES INFO?
 - WILL TRY PARSING...
 - BUT THIS IS A "CHANGE" OF PARADIGM
- It is likely a very good idea for distributed RI like LW

