Full documentation at this page.
Underlying tale of installations, applied configuration and tweaks
NVIDIA worker
Blacklist nouveau.
To avoid compilation errors (aka ERROR: Unable to load the kernel module 'nvidia.ko'...) when installing NVIDIA driver, is often not enough to include blacklist nouveau in /etc/modprobe.d/blacklist.conf. It is also required to remove it from the initrd image like so:
# echo -e "blacklist nouveau\noptions nouveau modeset=0" > /etc/modprobe.d/disable-nouveau.conf # mkinitrd -f -v /boot/initrd-$(uname -r).img $(uname -r) # or `dracut -f`
and reboot.
Install ./NVIDIA-Linux-x86_64-325.08.run or whatever other version.
Install ./cudatoolkit_4.0.17_linux_64_rhel6.0.run or whatever other version.
Check nvidia-smi command output.
- If not supported or NA information is found:
(..) +-----------------------------------------------------------------------------+ | Compute processes: GPU Memory | | GPU PID Process name Usage | |=============================================================================| | 0 Not Supported | | 1 Not Supported | | 2 Not Supported | | 3 Not Supported | +-----------------------------------------------------------------------------+
we need to patch libnvidia-ml.so.1 library:
Get patch from Github's nvml_fix repository.
Compile it with TARGET=<your-nvidia-driver-version> (must be supported by the fix).
HACK: in Scientific Linux 6 it must be compiled with pthread and dl libraries:
# cat Makefile (..) CFLAGS = -lpthread -ldl (..)
Remove the link /usr/lib64/libnvidia-ml.so.1 and substitute it with the just created $PWD/libnvidia-ml.so.1 file.
Note that we use lib64 (not the default Makefile's libdir location -> lib).
Do not use make install PREFIX=/usr, copy it by hand.
Do not create a link, since ldconfig will overwrite it.
Now nvidia-smi output should look like:
(..) +-----------------------------------------------------------------------------+ | Compute processes: GPU Memory | | GPU PID Process name Usage | |=============================================================================| | No running compute processes found | +-----------------------------------------------------------------------------+
- If not supported or NA information is found:
CREAM CE
Added to BLAHP script /usr/libexec/sge_local_submit_attributes.sh:
(..) if [ -n $gpu ]; then echo "#$ -l gpu=${gpu}" fi (..)
Scheduler
- [qmaster] Define complex value 'gpu':
#name shortcut type relop requestable consumable default urgency #------------------------------------------------------------------------------------------- (..) gpu gpu INT <= YES YES 0 0 (..)
- [qmaster] Host(s) complexes:
hostname tesla.ifca.es load_scaling NONE complex_values gpu=4,mem_free=24G,virtual_free=24G user_lists NONE xuser_lists NONE projects NONE xprojects NONE usage_scaling NONE report_variables NONE
- Load sensor:
hostname=`uname -n` while [ 1 ]; do read input result=$? if [ $result != 0 ]; then exit 1 fi if [ "$input" == "quit" ]; then exit 0 fi smitool=`which nvidia-smi` result=$? if [ $result != 0 ]; then gpusav=0 gpus=0 else gpustotal=`nvidia-smi -L|wc -l` gpusused=`nvidia-smi |grep "Process name" -A 6|grep -v +-|grep -v \|=|grep -v Usage|grep -v "No running"|wc -l` gpusavail=`echo $gpustotal-$gpusused|bc` fi echo begin echo "$hostname:gpu:$gpusavail" echo end done exit 0
- [qmaster] Per-host load sensor:
# qconf -sconf tesla #tesla.ifca.es: load_sensor /nfs4/opt/gridengine/util/resources/loadsensors/gpu.sh
- Must be available in the execution node (e.g. shared via NFS)
- [execd] Restart execd process to load the new sensor:
# ps auxf (..) root 24786 0.0 0.0 163252 2268 ? Sl 16:51 0:00 /nfs4/opt/gridengine/bin/lx-amd64/sge_execd root 24798 0.0 0.0 106104 1260 ? S 16:51 0:00 \_ /bin/sh /nfs4/opt/gridengine/util/resources/loadsensors/gpu.sh root 24801 0.0 0.0 106104 544 ? S 16:51 0:00 \_ /bin/sh /nfs4/opt/gridengine/util/resources/loadsensors/gpu.sh root 24802 71.0 0.0 11140 988 ? R 16:51 0:00 \_ nvidia-smi -L root 24803 0.0 0.0 100924 632 ? S 16:51 0:00 \_ wc -l (..)
- soft-stop the service if there are jobs running.
[qmaster] Query the GPU-host gpu resource:
# qhost -h tesla -F gpu HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS ---------------------------------------------------------------------------------------------- global - - - - - - - - - - tesla lx-amd64 4 1 4 4 0.19 23.5G 1.7G 11.8G 0.0 Host Resource(s): hl:gpu=4.000000