

Time Series Databases with InfluxDB

Andrei Dumitru
CERN IT Department // Database Services Group
20th of September 2017

Time Series Scenario

Time series data workload assumptions
Normally insert or append data workload

I High ingestion rates in some cases
I Recent timestamps and the data is added in time ascending order
I Rare updates and deletes
I Large deletes to free up disk space

Query operations different from RDBMs
I Individual points are not too important
I Aggregate data and large data sets
I Time-centric filtering and calculations

3

InfluxDB overview

Purpose-built for Time-Series

Open source (MIT License)

Native HTTP(S) APIs

SQL-like query language

Schema-less
Low hardware sizing to handle most of the use cases

I Compression
I Downsampling and data retention capabilities

High availability
I Clustering only available in Enterprise version (not free)

4

InfluxDB Key Concepts

Measurement

I Container for tags, fields and timestamp
I Conceptually similar to a table

> show measurements

name: measurements

name

cpu

cpu_load

cpu_temp

temperature

>

6

Tag

I The key-value pair that records metadata
I Tags are optional and they are indexed

> show tag keys from "cpu_load"

name: cpu_load

tagKey

host

region

>

7

Field

I The key-value pair that records metadata and data
I Fields are mandatory and they are not indexed

> show field keys from temperature

name: temperature

fieldKey fieldType

-------- ---------

inside float

outside float

>

8

Series

I Collection of data that share a retention policy, measurement and tag set

> show series from "cpu_load"

key

cpu_load,host=serverA,region=Meyrin

cpu_load,host=serverB,region=Wigner

>

> select * from "cpu_load" where time > now() - 1m;

name: cpu_load

time host region value

---- ---- ------ -----

1505840898274149470 serverA Meyrin 2.75

1505840902907684665 serverB Wigner 0.57

9

Retention policy

I How long InfluxDB keeps data (DURATION)
I How many copies of those data are stored in the cluster (REPLICATION)

show retention policies

name duration shardGroupDuration replicaN default

---- -------- ------------------ -------- -------

autogen 0s 168h0m0s 1 true

10

Using InfluxDB

InfluxDB Interfaces

HTTP API

Endpoint Description

/ping Check the status of your InfluxDB instance and your version of InfluxDB
/query Query data and manage databases, retention policies, and users
/write Write data to a pre-existing database

Multiple API client libraries available
I Go, Python, Java, JavaScript, Perl, .Net, etc.

12

Example

I Use the HTTP API to see the database version

curl -i https://dbod-DBNAME.cern.ch:DBPORT/ping

HTTP/1.1 204 No Content

Content-Type: application/json

Request-Id: c4443ff6-9d7d-11e7-82dd-000000000000

X-Influxdb-Version: 1.3.0

Date: Tue, 19 Sep 2017 21:01:54 GMT

13

Command Line Interface

I Interactive shell for the HTTP API

influx -ssl \

-host dbod-DBNAME.cern.ch \

-port DBPORT \

-username 'username' \

-password ''

password:

Connected to https://dbod-DBNAME.cern.ch:DBPORT version 1.3.0

InfluxDB shell version: 1.3.0

> set password for "admin" = 'NewPasswordHere'

>

14

Writing data

Syntax

measurement[,tag_key1=tag_value1...] field_key=field_value[,field_key2=

↪→ field_value2] [timestamp]

HTTP write

curl --user "username:password" -i \

-XPOST 'https://dbod-DBNAME.cern.ch:DBPORT/write?db=mydb' \

--data-binary \

'cpu_load,host=serverA,region=Meyrin value=0.49 1505844394686769520'

15

Datatypes

Measurements, tag keys, tag values and field keys are strings

Field values can be strings, floats, integers or booleans

Timestamps are UNIX timestamps with precision up to nanoseconds (default)

measurement[,tag_key1=tag_value1...] field_key=field_value[,field_key2

↪→ =field_value2] [timestamp]

16

Querying data

I SQL-like query language

SELECT COUNT(value)

FROM cpu_load

WHERE time > now() - 2h

AND time < now() - 60m

AND host='serverA'

GROUP BY time(1h);

name: cpu_load

time count

---- -----

2017-09-19T16:00:00Z 17

2017-09-19T17:00:00Z 2

>

17

Querying data

I Using the HTTP API

curl --user "username:password" -i \

-G 'https://DBNAME:DBPORT/query?pretty=true' \

--data-urlencode "db=mydb" \

--data-urlencode \

"q=select count(value)

from cpu_load

where time > now() - 2h

and time < now() - 60m

and host='serverA'

group by time(1h)"

18

Querying data

I Using the HTTP API

{"results": [{

"statement_id": 0,

"series": [{"name": "cpu_load",

"columns": ["time" ,"count"],

"values": [["2017-09-19T16:00:00Z" ,17],

["2017-09-19T17:00:00Z" , 2]

]

}

]}]}

19

InfluxQL Functions

Aggregations Selectors Transformations Predictor

COUNT BOTTOM CEILING HOLT_WINTERS
DISTINCT FIRST CUMULATIVE_SUM
INTEGRAL LAST DERIVATIVE
MEAN MAX DIFFERENCE
MEDIAN MIN ELAPSED
MODE PERCENTILE FLOOR
SPREAD SAMPLE HISTOGRAM
STDDEV TOP MOVING_AVERAGE
SUM NON_NEGATIVE_DERIVATIVE

NON_NEGATIVE_DIFFERENCE

20

Sampling

Continuous Queries (CQ)
I Query that runs automatically and periodically
I Store query results in a specified measurement.
I Require a function in the select clause and must include a "group by time()"

CREATE CONTINUOUS QUERY "mycq" ON "mydb"

BEGIN

SELECT min("temperature")

INTO "min_temperature"

FROM "cooling_system"

GROUP BY time(30m)

END

21

Continuous Queries are not concurrent

Continues Queries are single thread
I All CQ run sequentially in the instance

Issue observed
I CQ takes longer than its interval
I Multiple CQs with different intervals, longer CQs delay the rest of CQs

No fix available now
I Review CQ execution time
I CQ output for real time or low latency uses is not recommended

Concurrent CQs might be added in a future release
I https://github.com/influxdata/influxdb/issues/8545

Continuous Query Statistics (if enabled)
I available in the cq_query measurement of the _internal monitor database
I db, cq, durationNS, startTime, endTime, pointsWrittenOK

22

https://github.com/influxdata/influxdb/issues/8545

Compactions concurrency

What are compactions ?
I recurring processes the run automatically in the database
I migrate data stored in a write-optimized format into a more read-optimized format

There are multiple level compactions
I some of them can take some time depending on the amount of data

Compactions generate a lot of IO activity
I It generates a new copy of the data compacted and then deletes the data not

compacted

Performance issues when there are concurrent compactions under high load
instances
We cannot control when the compactions are run but...

I New option to limit the concurrent compactions from 1.3 release
I max-concurrent-compactions

23

https://docs.influxdata.com/influxdb/v1.3/concepts/storage_engine/#compactions

Conclusions

Most use cases work fine with single instance

Project continues very active and evolving fast

InfluxDB fully integrated in the CERN Database on Demand platform

Currently running 65 InfluxDB instances

Upgrade to version 1.3.5 being prepared

24

Thank you

Special thanks to Antonio Romero Marin
for the work on the InfluxDB pilot project.

(and for the slides)

25

home.cern

http://home.cern

	Introduction

