welcome: please sign in
location: Diff for "Cloud/Usage"
Differences between revisions 59 and 88 (spanning 29 versions)
Revision 59 as of 2012-10-01 08:57:34
Size: 38510
Editor: enol
Comment:
Revision 88 as of 2017-07-04 11:12:30
Size: 1152
Editor: aloga
Comment:
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:

{{{#!wiki caution
'''This is a beta service'''

Please note that we are currently deploying the Cloud infrastructure at IFCA, so work is still in progress. If you find any error, please open a ticket on the helpdesk.
}}}
Line 15: Line 9:
This is a beta service, since the deployment and development is ongoing. However, access is granted to certain users to test the functionality. IFCA uses [[https://openstack.org|OpenStack]] for managing the cloud service. You may get access upon [[https://support.ifca.es/rt/Ticket/Create.html?Queue=3&Subject=New Cloud Account|request]]. There are several ways to access the infrastructure, namely:
Line 17: Line 11:
Check this document for updates frequenlty, since changes in the service may occur.  * [[http://portal.cloud.ifca.es|Horizon Web dashboard]]
 * [[http://api.openstack.org/|OpenStack API]], that can be used with the different command line interfaces.
 * [[http://occi-wg.org/|OCCI API]], that can be used with [[https://github.com/gwdg/rOCCI-cli|rOCCI client]]
Line 19: Line 15:
IFCA uses !OpenStack for managing the cloud service, which provides several ways to access:
 * [[http://portal.cloud.ifca.es|Web dashboard]]
 * [[http://api.openstack.org/|OpenStack API]], that can be used with the `nova` command line interface.
 * [[http://aws.amazon.com/ec2/|Amazon EC2 API]], available with the `euca` commands.
== Documentation ==
Line 24: Line 17:
This documents focuses on the usage of the `nova` command in the [[Cluster/Usage|GRIDUI Cluster]]. The official, up to date documentation can be found in the following link:
Line 26: Line 19:
== Credentials ==  * http://docs.openstack.org/user-guide/content/
Line 28: Line 21:
You need a valid account for accessing the cloud services. The username and password of that account may not be the same you are using in the [[Cluster/Usage|GRIDUI Cluster]]. Contact the [[http://support.ifca.es|helpdesk]] if you need further information on your account.

Once you have a valid user and password, you can obtain your credentials in the dashboard of !OpenStack. Login into [[http://portal.cloud.ifca.es|Web portal]] and go to your settings area (Link in the upper right corner). There you two different kind of credentials:
 * The !OpenStack Credentials that can be used with the `nova` command
 * The EC2 Credentials can be used with `euca` tools.

Download the configuration file for !OpenStack and copy it to the GRIDUI before attempting any of the commands. Once you have the file, source it in order to have the environment ready.
{{{
$ . openrc.sh
Please enter your OpenStack Password:
}}}

Now you should be able to execute the commands to access the resources. Try that your environment is correct with the `nova endpoints` command. It should return all the services available in the !OpenStack installation:

{{{
$ nova endpoints
+-------------+---------------------------------------------------------------+
| nova-volume | Value |
+-------------+---------------------------------------------------------------+
| adminURL | http://cloud.ifca.es:8776/v1/c725b18d8d0643e7b410dc5a8d9ab554 |
| internalURL | http://cloud.ifca.es:8776/v1/c725b18d8d0643e7b410dc5a8d9ab554 |
| publicURL | http://cloud.ifca.es:8776/v1/c725b18d8d0643e7b410dc5a8d9ab554 |
| region | RegionOne |
+-------------+---------------------------------------------------------------+
+-------------+-------------------------------+
| glance | Value |
+-------------+-------------------------------+
| adminURL | http://glance.ifca.es:9292/v1 |
| internalURL | http://glance.ifca.es:9292/v1 |
| publicURL | http://glance.ifca.es:9292/v1 |
| region | RegionOne |
+-------------+-------------------------------+
+-------------+-----------------------------------------------------------------+
| nova | Value |
+-------------+-----------------------------------------------------------------+
| adminURL | http://cloud.ifca.es:8774/v1.1/c725b18d8d0643e7b410dc5a8d9ab554 |
| internalURL | http://cloud.ifca.es:8774/v1.1/c725b18d8d0643e7b410dc5a8d9ab554 |
| publicURL | http://cloud.ifca.es:8774/v1.1/c725b18d8d0643e7b410dc5a8d9ab554 |
| region | RegionOne |
| serviceName | nova |
+-------------+-----------------------------------------------------------------+
+-------------+------------------------------------------+
| ec2 | Value |
+-------------+------------------------------------------+
| adminURL | http://cloud.ifca.es:8773/services/Admin |
| internalURL | http://cloud.ifca.es:8773/services/Cloud |
| publicURL | http://cloud.ifca.es:8773/services/Cloud |
| region | RegionOne |
+-------------+------------------------------------------+
+-------------+------------------------------------+
| keystone | Value |
+-------------+------------------------------------+
| adminURL | http://keystone.ifca.es:35357/v2.0 |
| internalURL | http://keystone.ifca.es:5000/v2.0 |
| publicURL | http://keystone.ifca.es:5000/v2.0 |
| region | RegionOne |
+-------------+------------------------------------+
}}}

== Managing machines ==

The cloud service lets you instantiate virtual machines (VM) on demand. When you request the creation of a new VM, you can select the operating systems and the size (RAM, Disk, CPUs) that will be used to run the machine. In this section we will show how to discover which software and sizes are available and how to start a new virtual machine.

=== Keypairs ===

Before attempting to start a new virtual machine, you should have a keypair that will allow you to login into the machine once it is running. Normally you just need to create one keypair that can be reused for all your virtual machines (although you can create as much SSH credentials as you want).

The `nova keypair-list` command shows your current keypairs. Initially the command should not return anything.

In order to create a new key, use `nova keypair-add` with a name for the key you want to use redirecting the ouput to the file where you want to store that key. For example, for creating a key named `cloudkey` that will be stored in `cloudkey.pem`:

{{{
$ nova keypair-add cloudkey > cloudkey.pem
}}}

Your recently created keypair should now appear in the list of available keypairs:

{{{
$ nova keypair-list
+----------+-------------------------------------------------+
| Name | Fingerprint |
+----------+-------------------------------------------------+
| cloudkey | 37:fd:b6:73:59:78:fd:f2:7f:e7:9c:1b:9a:88:a5:cb |
+----------+-------------------------------------------------+
}}}

Make sure that you keep safe the file `cloudkey.pem`, since it will contain the private key needed to access your cloud machines. Set proper permissions to the key before using it with `chmod 600 clodkey.pem` (only user can read or write). If you need to delete one of your keypairs, use the `nova keypair-delete` command.

=== Images ===

The service lets you run VMs with different Operating Systems, you can list all the available ones with the `nova image-list` command. The `ID` of the image will be used as arguments for other commands.

{{{
$ nova image-list
+--------------------------------------+----------------------------------------------+--------+--------+
| ID | Name | Status | Server |
+--------------------------------------+----------------------------------------------+--------+--------+
| 6b3046eb-4649-44d6-96c2-9a93d3aab8dc | Fedora 15 | ACTIVE | |
| e803caa2-c247-4088-80fd-54e77b20a5cb | Fedora 15 initrd | ACTIVE | |
| 6823e5b0-13fc-4ce3-afd8-057285820ed2 | Fedora 15 kernel | ACTIVE | |
| 0249a9cc-dced-4c5f-91eb-d6900576206f | Fedora 17 | ACTIVE | |
| f07c936f-7678-40e5-bbfd-f7142a5482ff | Fedora 17 initrd | ACTIVE | |
| a0fbc138-1879-439f-8f78-9b98893778b3 | Fedora 17 kernel | ACTIVE | |
| d3ac534d-d839-4b25-af92-c143930f3694 | Fedora 17 old glibc | ACTIVE | |
| d1eec0f5-e948-435d-899c-d865320698d7 | IFCA Debian Wheezy (2011-08) JeOS | ACTIVE | |
| cdbb6f8f-d10e-4e2b-879d-250d29fb9dbb | IFCA Scientific Linux 5.5 + PROOF v5.30.00 | ACTIVE | |
| 6857ee01-2ba9-4846-b788-9e826dd9aaba | IFCA Scientific Linux 5.5 + ROOT v5.30.00 | ACTIVE | |
| 18d99a06-c3e5-4157-a0e3-37ec34bdfc24 | IFCA Scientific Linux 5.5 JeOS | ACTIVE | |
| 75896bad-05d3-45f6-9958-5940f82d0048 | IFCA Scientific Linux 6.2 JeOS | ACTIVE | |
| 486c139e-f34d-465c-959c-1b9c8bf60cfd | IFCA Ubuntu Server 10.04 JeOS | ACTIVE | |
| 694f2673-7ea3-4690-a25e-c9dd4297519a | IFCA Ubuntu Server 10.04 JeOS | ACTIVE | |
| 66963875-5389-4048-b385-6f7e12a0915f | IFCA Ubuntu Server 11.10 JeOS | ACTIVE | |
| 3ef6bb0c-6a17-47c9-a949-70256eb6651e | IFCA openSUSE 11.4 + Compilers | ACTIVE | |
| daaed27e-6226-4295-8018-ad3b6b5210f6 | IFCA openSUSE 11.4 + Compilers + Mathematica | ACTIVE | |
| 29233856-ed8e-4b61-ac81-898eb5e7c263 | IFCA openSUSE 11.4 JeOS | ACTIVE | |
| f4e39219-ad13-495e-a35b-315a94675b0f | Ubuntu 11.10 kernel | ACTIVE | |
| 369455d3-7f84-4630-b60c-e0ebf29a410c | Ubuntu 12.04 JeOS | ACTIVE | |
| 4590d3b0-1df6-49a7-ae68-4dde83089b01 | Ubuntu Server 11.10 JeOS | ACTIVE | |
| fea1838f-29a0-47dd-bd84-6c6cc6806ff3 | cloudpipe | ACTIVE | |
| 6f02785c-5a39-4e1a-a7e3-75d48f0f0076 | ubuntu 12.04 kernel | ACTIVE | |
+--------------------------------------+----------------------------------------------+--------+--------+
}}}

The `nova image-show` can give you more details about a given image, for example the "IFCA Scientific Linux 5.5 JeOS", which has an ID `18d99a06-c3e5-4157-a0e3-37ec34bdfc24`:

{{{
$ nova image-show 18d99a06-c3e5-4157-a0e3-37ec34bdfc24
+----------+--------------------------------------+
| Property | Value |
+----------+--------------------------------------+
| created | 2012-01-30T10:12:22Z |
| id | 18d99a06-c3e5-4157-a0e3-37ec34bdfc24 |
| minDisk | 0 |
| minRam | 0 |
| name | IFCA Scientific Linux 5.5 JeOS |
| progress | 100 |
| status | ACTIVE |
| updated | 2012-07-18T08:50:48Z |
+----------+--------------------------------------+
}}}

=== Sizes ===

As in the case of the image to use, you can select the size of the VM to start. The list of available sizes (flavors in !OpenStack terminology) can be obtained with `nova flavor-list`:

{{{
$ nova flavor-list
+----+-----------+-----------+------+-----------+------+-------+-------------+-----------+-------------+
| ID | Name | Memory_MB | Disk | Ephemeral | Swap | VCPUs | RXTX_Factor | Is_Public | extra_specs |
+----+-----------+-----------+------+-----------+------+-------+-------------+-----------+-------------+
| 1 | m1.tiny | 512 | 0 | 0 | | 1 | 1.0 | N/A | {} |
| 2 | m1.small | 2048 | 10 | 20 | | 1 | 1.0 | N/A | {} |
| 3 | m1.medium | 4096 | 10 | 40 | | 2 | 1.0 | N/A | {} |
| 4 | m1.large | 7000 | 10 | 80 | | 4 | 1.0 | N/A | {} |
| 5 | m1.xlarge | 14000 | 10 | 160 | | 8 | 1.0 | N/A | {} |
+----+-----------+-----------+------+-----------+------+-------+-------------+-----------+-------------+
}}}

=== Starting a machine ===

For starting a new VM, you need to specify one image, one size and a name for the new machine. Optionally, you can also spcify a keypair (it is always recommended to do so). The `nova boot` command lets you start the machine. For example, in order to create a VM that:
 * runs IFCA Scientific Linux 5.5 JeOS (ID `18d99a06-c3e5-4157-a0e3-37ec34bdfc24`)
 * of size `m1.tiny`
 * with the key `cloudkey`
 * and named `testVM`
you would need to issue the following command:

{{{
$ nova boot --flavor m1.tiny --image 18d99a06-c3e5-4157-a0e3-37ec34bdfc24 --key-name cloudkey testVM
+------------------------+--------------------------------------+
| Property | Value |
+------------------------+--------------------------------------+
| OS-DCF:diskConfig | MANUAL |
| OS-EXT-STS:power_state | 0 |
| OS-EXT-STS:task_state | scheduling |
| OS-EXT-STS:vm_state | building |
| accessIPv4 | |
| accessIPv6 | |
| adminPass | PGg4KxZo3Fn4 |
| config_drive | |
| created | 2012-09-28T10:02:02Z |
| flavor | m1.tiny |
| hostId | |
| id | cd9e08b9-6899-4748-909a-2ff667ff1905 |
| image | IFCA Scientific Linux 5.5 JeOS |
| key_name | cloudkey |
| metadata | {} |
| name | testVM |
| progress | 0 |
| status | BUILD |
| tenant_id | c725b18d8d0643e7b410dc5a8d9ab554 |
| updated | 2012-09-28T10:02:03Z |
| user_id | db66762e4fe148f8b8484c461a7a7182 |
+------------------------+--------------------------------------+
}}}

The `id` of the machine will allow you to query its status with `nova show`:

{{{
$ nova show cd9e08b9-6899-4748-909a-2ff667ff1905
+------------------------+-----------------------------------------------------------------------+
| Property | Value |
+------------------------+-----------------------------------------------------------------------+
| OS-DCF:diskConfig | MANUAL |
| OS-EXT-STS:power_state | 2 |
| OS-EXT-STS:task_state | None |
| OS-EXT-STS:vm_state | active |
| accessIPv4 | |
| accessIPv6 | |
| config_drive | |
| created | 2012-09-28T10:02:02Z |
| flavor | m1.tiny (1) |
| hostId | 5ed92271869711d494f1326b9611825d5635ab659ea3e143c13ca8c6 |
| id | cd9e08b9-6899-4748-909a-2ff667ff1905 |
| image | IFCA Scientific Linux 5.5 JeOS (18d99a06-c3e5-4157-a0e3-37ec34bdfc24) |
| key_name | cloudkey |
| metadata | {} |
| name | testVM |
| private network | 172.16.2.8 |
| progress | 0 |
| status | ACTIVE |
| tenant_id | c725b18d8d0643e7b410dc5a8d9ab554 |
| updated | 2012-09-28T10:03:54Z |
| user_id | db66762e4fe148f8b8484c461a7a7182 |
+------------------------+-----------------------------------------------------------------------+
}}}

Alternatively, you can use `nova list` to get the list of the current machines:
{{{
$ nova list
+--------------------------------------+--------------------------------------+--------+-------------------------------------+
| ID | Name | Status | Networks |
+--------------------------------------+--------------------------------------+--------+-------------------------------------+
| 4b999e84-b37e-4b95-952d-3414ba271930 | c725b18d8d0643e7b410dc5a8d9ab554-vpn | ACTIVE | private=172.16.2.2 |
| 3051dea4-0164-4a3a-9af2-14efe7ea93e9 | horizon_test | ACTIVE | private=172.16.2.11, 193.146.75.142 |
| e02cee2d-c09f-4429-9724-91d7e10277ec | lbnl | ACTIVE | private=172.16.2.10 |
| cd9e08b9-6899-4748-909a-2ff667ff1905 | testVM | ACTIVE | private=172.16.2.8 |
+--------------------------------------+--------------------------------------+--------+-------------------------------------+
}}}

=== Connecting to the machine ===

Once the machine status is `ACTIVE`, it will be ready for using it. You can connect via ssh with your key. The IP address of the machine is shown in the `nova list` output.

{{{
$ ssh -i cloudkey.pem root@172.16.2.8
Last login: Mon May 10 16:11:40 2010
[root@testvm ~]#
}}}

=== VM Lifecycle ===

Your VM will be available until you explicitly destroy it. You can pause/reboot/resume/delete the machine with these commands:

|| Action || Command ||
|| Reboot the VM || `nova reboot <id>` ||
|| Pause the VM || `nova pause <id>` ||
|| Resume the VM || `nova resume <id>` ||
|| Delete the VM || `nova delete <id>` ||

Deleting the machine will destroy it and the contents of the disk will be lost. Make sure that all your data are stored in a permanent storage before deleting the machine. See the section on volumes for more information.

{{{
$ nova delete cd9e08b9-6899-4748-909a-2ff667ff1905
$ nova list
+--------------------------------------+--------------------------------------+--------+-------------------------------------+
| ID | Name | Status | Networks |
+--------------------------------------+--------------------------------------+--------+-------------------------------------+
| 4b999e84-b37e-4b95-952d-3414ba271930 | c725b18d8d0643e7b410dc5a8d9ab554-vpn | ACTIVE | private=172.16.2.2 |
| 3051dea4-0164-4a3a-9af2-14efe7ea93e9 | horizon_test | ACTIVE | private=172.16.2.11, 193.146.75.142 |
| e02cee2d-c09f-4429-9724-91d7e10277ec | lbnl | ACTIVE | private=172.16.2.10 |
+--------------------------------------+--------------------------------------+--------+-------------------------------------+
}}}
Plase refer to that documentation, since it contains the most up to date and accurate documentation for using OpenStack resources.
Line 303: Line 24:
'''Always delete your VMs once you do not need them anymore''' Important: Do not hesitate in [[https://support.ifca.es/rt/Ticket/Create.html?Queue=3 | opening a ticket]] if you notice problems using cloud services.
Line 305: Line 26:

== Permanent Storage: Volumes ==

The VMs use a temporary disk that is destroy when the machine is deleted. If you need permanent storage for your data, you can use Volumes. Volumes are raw block devices that can be created dynamically with a desired size. Volumes can be ''attached'' and ''detached'' from a running cloud VM to be used as a data disk (similarly to a usb stick that can be plug and unplugged to a computer).

=== Creating Volumes ===

The `nova volume-create` creates new volumes. You must specify the size (in GB) and optionally a name. In our case we will create a new volume with 5GB called `mydata`

{{{
$ nova volume-create --display-name 'mydata' 5
+---------------------+----------------------------+
| Property | Value |
+---------------------+----------------------------+
| attachments | [] |
| availability_zone | nova |
| created_at | 2012-09-28 15:16:44.590600 |
| display_description | None |
| display_name | mydata |
| id | 14 |
| metadata | {} |
| size | 5 |
| snapshot_id | None |
| status | creating |
| volume_type | None |
+---------------------+----------------------------+
}}}

The `nova volume-list` shows all available volumes:
{{{
$ nova volume-list
+----+-----------+--------------+------+-------------+-------------+
| ID | Status | Display Name | Size | Volume Type | Attached to |
+----+-----------+--------------+------+-------------+-------------+
| 14 | available | mydata | 5 | None | |
+----+-----------+--------------+------+-------------+-------------+
}}}

The volume is now created and can be attached to a VM.

=== Attaching Volumes ===

Attaching is the process of associating a volume with a given instance, so the volume is seen as a new block device in the VM. The command to attach the volume is `nova volume-attach`, and the parameters are:
 * the id of the VM
 * the id of the volume
 * the local block device where the volume will be attached. These devices are in the form `/dev/xvd<DEVICE_LETTER>`, where `<DEVICE_LETTER>` goes from `c` to `z` (`/dev/xvdc`, `/dev/xvdd`, ..., `/dev/xvdz`)

For example:

{{{
$ nova volume-attach 9f870141-638e-4eb9-a2fa-ec770d1edb79 14 /dev/xvdc
+----------+-------+
| Property | Value |
+----------+-------+
| id | 14 |
| volumeId | 14 |
+----------+-------+
}}}

`nova volume-list` should now show that the volume is attached:

{{{
$ nova volume-list
+----+--------+--------------+------+-------------+--------------------------------------+
| ID | Status | Display Name | Size | Volume Type | Attached to |
+----+--------+--------------+------+-------------+--------------------------------------+
| 14 | in-use | mydata | 5 | None | 9f870141-638e-4eb9-a2fa-ec770d1edb79 |
+----+--------+--------------+------+-------------+--------------------------------------+
}}}

Log into your VM and check with `dmesg` that the volume is now attached:
{{{
[root@testvm ~]# fdisk -l | grep Disk
Disk /dev/xvda doesn't contain a valid partition table
Disk /dev/xvdc doesn't contain a valid partition table
Disk /dev/xvda: 3220 MB, 3220176896 bytes
Disk identifier: 0x00000000
Disk /dev/xvdc: 5368 MB, 5368709120 bytes
Disk identifier: 0x00000000
}}}

{{{#!wiki caution
Volumes are created without any kind of filesystem, you will need to create one the first time that you use it. A single ext4 partition should be enough for most use cases. You can create such filesystem with this command from your VM: `mkfs.ext4 /dev/xvdc` (change `/dev/xvdc` if needed)
}}}

Now you can mount your volume (for example in /srv) and start using it:
{{{
[root@testvm ~]# mount -t ext4 -o sync /dev/xvdc /srv
[root@testvm ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/xvda 3.0G 790M 2.1G 28% /
tmpfs 245M 0 245M 0% /dev/shm
/dev/xvdc 5.0G 138M 4.6G 3% /srv
}}}

=== Detaching Volumes ===

Once you are done with the volume, you can umount it at your VM:
{{{
[root@testvm ~]# umount /dev/xvdc
}}}

And detach it from the VM with `nova detach` with the VM and Volume id as arguments:
{{{
$ nova volume-detach 9f870141-638e-4eb9-a2fa-ec770d1edb79 14
}}}

The volume should appear again as available when you list it:
{{{
$ nova volume-list
+----+-----------+--------------+------+-------------+-------------+
| ID | Status | Display Name | Size | Volume Type | Attached to |
+----+-----------+--------------+------+-------------+-------------+
| 14 | available | mydata | 5 | None | |
+----+-----------+--------------+------+-------------+-------------+
}}}

=== Deleting volumes ===

You can reuse as many times as you like your volumes in your VMs, the data stored in them will persist after you have destroy your VMs. If you no longer need one of your volumes, you can do so with the `nova volume-delete` command. Once you delete a volume, you will not be able to access to its data again!.

{{{
$ nova-delete 9
}}}

== Networking ==

All created VMs have a private IP accessible from the GRIDUI. If you need access to the machine from outside GRIDUI, there are two alternatives: using a VPN or assigning public IPs to the VMs.

=== VPN ===

=== Public IPs ===

IFCA provides a pool of public IPs to use them in the cloud service. These can be allocated for your use and assigned to your VMs. Please note that the number of public IPs is limited!

New IPs are created with `nova floating-ip-create`:
{{{
$ nova floating-ip-create
+----------------+-------------+----------+------+
| Ip | Instance Id | Fixed Ip | Pool |
+----------------+-------------+----------+------+
| 193.146.75.142 | None | None | nova |
+----------------+-------------+----------+------+
}}}

You can get the list of the current available IPs with `nova floation-ip-list`:
{{{
$ nova floating-ip-list
+----------------+-------------+----------+------+
| Ip | Instance Id | Fixed Ip | Pool |
+----------------+-------------+----------+------+
| 193.146.75.142 | None | None | nova |
+----------------+-------------+----------+------+
}}}

This newly allocated IP can now be associated to a running VM with `nova add-floating-ip <VM ID> <IP>`:
{{{
$ nova add-floating-ip 9f870141-638e-4eb9-a2fa-ec770d1edb79 193.146.75.142
}}}

The list command will show that the IP is assigned:
{{{
$ nova floating-ip-list
+----------------+--------------------------------------+------------+------+
| Ip | Instance Id | Fixed Ip | Pool |
+----------------+--------------------------------------+------------+------+
| 193.146.75.142 | 9f870141-638e-4eb9-a2fa-ec770d1edb79 | 172.16.2.9 | nova |
+----------------+--------------------------------------+------------+------+
}}}

And you will be able to connect to the machine with this new IP:
{{{
$ ssh -i cloudkey.pem root@193.146.75.142
The authenticity of host '193.146.75.142 (193.146.75.142)' can't be established.
RSA key fingerprint is 29:80:9b:28:e7:8a:00:fe:6c:60:ef:e6:a6:71:33:bd.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '193.146.75.142' (RSA) to the list of known hosts.
Last login: Fri Sep 28 16:54:40 2012 from gridui02.ifca.es
[root@testvm ~]#
}}}

IPs can be disassociated from the VM with the `nova remove-floating-ip <VM ID> <IP>`:
{{{
$ nova remove-floating-ip 9f870141-638e-4eb9-a2fa-ec770d1edb79 193.146.75.142
}}}

IPs can be associated/disassociated as many times as needed to any VM you may have running. When no longer needed, release the IP address (i.e. it will no longer be available four your use):
{{{
$ nova floating-ip-delete 193.146.75.142
}}}

== Euca commands ==

This document is based in the `nova` native commands of !OpenStack, but you can also use the `euca-` commands that use the EC2 API instead of the !OpenStack one.
Credentials for EC2 can be obtained from the web portal. You can download a zip file and unzip it into your GRIDUI home. It contains some certificates and a shell script with the variables needed for running the euca commands. Source it before attempting any command:
{{{
$ . ec2rc.sh
}}}

The process for managing your VMs is practically identical, but you need to be aware that different identifiers are used at each system.
For example, showing all the available images is performed with `euca-describe-images`. The id to use when starting the image is in the form `ami-xxxxxxxx`:

{{{
$ euca-describe-images
IMAGE ami-00000001 None (IFCA Scientific Linux 5.5 JeOS) available public machine instance-store
IMAGE ami-00000002 None (IFCA Scientific Linux 5.5 + ROOT v5.30.00) available public machine instance-store
IMAGE ami-00000003 None (IFCA Ubuntu Server 10.04 JeOS) available public machine instance-store
IMAGE ami-00000004 None (IFCA Debian Wheezy (2011-08) JeOS) available publicmachine instance-store
IMAGE ami-00000005 None (cloudpipe) available public machine instance-store
IMAGE ami-00000006 None (IFCA Scientific Linux 5.5 + PROOF v5.30.00) available public machine instance-store
IMAGE ami-00000007 None (IFCA Ubuntu Server 10.04 JeOS) available public machine instance-store
IMAGE ami-00000008 None (IFCA openSUSE 11.4 JeOS) available public machine instance-store
IMAGE ami-00000009 None (IFCA openSUSE 11.4 + Compilers) available public machine instance-store
IMAGE ami-0000000a None (IFCA openSUSE 11.4 + Compilers + Mathematica) available public machine instance-store
IMAGE ami-0000000b None (IFCA Ubuntu Server 11.10 JeOS) available public machine instance-store
IMAGE ami-0000000c None (Fedora 15) available public machine aki-0000000d ari-0000000e instance-store
IMAGE aki-0000000d None (Fedora 15 kernel) available private kernel instance-store
IMAGE ari-0000000e None (Fedora 15 initrd) available private ramdisk instance-store
IMAGE ari-00000011 None (Fedora 17 initrd) available private ramdisk instance-store
IMAGE aki-00000010 None (Fedora 17 kernel) available private kernel instance-store
IMAGE ami-0000000f None (Fedora 17) available public machine aki-00000010 ari-00000011 instance-store
IMAGE ami-00000012 None (Fedora 17 old glibc) available public machine aki-00000010 ari-00000011 instance-store
IMAGE ami-00000017 None (IFCA Scientific Linux 6.2 JeOS) available public machine instance-store
IMAGE aki-00000023 None (ubuntu 12.04 kernel) available public kernel instance-store
IMAGE ami-00000022 None (Ubuntu 12.04 JeOS) available public machine instance-store
IMAGE aki-00000025 None (Ubuntu 11.10 kernel) available public kernel instance-store
IMAGE ami-00000024 None (Ubuntu Server 11.10 JeOS) available public machine aki-00000025 instance-store
}}}

Booting a VM with:
 * runs IFCA Scientific Linux 5.5 JeOS (ID `ami-00000001`)
 * of size `m1.tiny`
 * with the key `cloudkey`

{{{
$ euca-run-instances -k cloudkey -t m1.tiny ami-00000001
RESERVATION r-d4722tgt c725b18d8d0643e7b410dc5a8d9ab554 default
INSTANCE i-00000203 ami-00000001 server-515 server-515 pending cloudkey 2012-10-01T08:46:42.000Z None None
}}}

Again, note the different kind of identifiers. Any other euca commands referring to this VM should use the `i-00000203` as identifier.

The following table summarizes the main commands and their euca equivalents.

|| Action || nova || euca ||
|| Create a keypair named `cloudkey` || `nova keypair-add cloudkey > cloudkey.pem` || `euca-add-keypair cloudkey > cloudkey.pem` ||
|| List keypairs || `nova keypair-list` || `euca-describe-keypairs` ||
|| List images || `nova image-list` || `euca-describe-images` ||
|| List sizes || `nova flavor-list` || Not available ||
|| Start VM || `nova boot --flavor <flavor_name> --image <image_id> --key-name <key_name> <VM_NAME>` || `euca-run-instances -t <flavor_name> -k <key_name> ami-<AMI>` ||
|| List VMs || `nova list` || `euca-describe-instances` ||
|| Show VM details || `nova show <vm_id>` || `euca-describe-instances i-<vm_id>` ||
|| Delete VM || `nova delete <vm_id>` || `euca-terminate-instances i-<vm_id>` ||
|| Create Volume || `nova volume-create <size in GB>` || `euca-create-volume -s <size in GB>` ||
|| List Volume || `nova volume-list` || `euca-describe-volumes` ||
|| Attach Volume || `nova volume-attach <vm_id> <vol_id> <local device>` || `euca-attach-volume -i i-<vm_id> -d <local device> vol-<vol_id>` ||
|| Detach Volume || `nova volume-detach <vm_id> <vol_id>` || `euca-detach-volme vol-<vol_id>` ||
|| Allocate IP || `nova floating-ip-create` || `euca-allocate-address` ||
|| Associate IP || `nova add-floating-ip <vm_id> <IP>` || `euca-associate-address -i i-<vm_id> <IP>` ||
|| List IPs || `nova floation-ip-list` || `euca-describe-addresses` ||
|| Disassociate IP || `nova remove-floating-ip <vm_id> <IP>` || `euca-disassociate-address <IP>` ||
|| Release IP || `nova floating-ip-delete <IP>` || `euca-release-address <IP>` ||

== Using the web portal ==

The !OpenStack dashboard lets you perform all the operations described in this manual from your web browser.

'''NEDS REVISION'''

=== Creating a Machine with OpenStack ===

Go to http://portal.cloud.ifca.es to access to OpenStack system, which lets you to create a new image in the cloud.

=== Image and size selection ===
You should launch the image that you want to use (within a list of OS) and click “Launch”. A new popup window will be shown and you have to choose the configuration of the system (requirements, name of the server...).


{{attachment:openstack2.png|alt text|width=600}}
=== Create SSH credentials ===

You must import or create a new key in order to access to that image. To do so go to “Access & Security” tab and click on Create or Import Keypair.

{{attachment:openstack1.png|alt text|width=600}}

=== Connect to the server ===

In order to access throw ssh to the image, you must asign an IP to the instance. Click on “Access & Security” again and select “Allocate IP to project”. Choose the type of IP that you want to use and click “Allocate IP”. After that, you need to link that IP with your new image. Click on the button “Associate IP” of your new IP and select the instance that you have just created.

{{attachment:openstack3.png|alt text|width=600}}

==== SSH Connection ====

Last step is to download the keypair that you have created or imported and move it to the machine that you will use to conect to the isntance. Change permission to 600 and use the following command to connect:

{{{
$ Ssh -i clave.pem root@cloud.image.IP
}}}

Done


== Advanced topics ==

=== Attach to the project's VPN ===

Each project has a VPN assigned to it. You can attach any computer to it, thus having it connected to your project's internal network. So as to do so, you have to perform several steps (instructions only for GNU/Linux):

 1. Copy your `~.cloud` to the machine that you want to attach to your project's VPN.
 1. Install [[https://www.openvpn.net/|OpenVPN]] on that machine.
 1. Launch openvpn with the `nova-vpn.conf` configuration file.

{{{
# cd cloud_credentials
# openvpn --config nova-vpn.conf
}}}

Please note that there are several paths in the `nova-vpn.conf` configuration file that are relative to the directory in which it is located. Should you wish to use different/separated paths, please edit `nova-vpn.conf` and adjust the `cert`, `key` and `ca` parameters.

MacOS users may use [[http://code.google.com/p/tunnelblick/| Tunnelblick]] (a GUI interface to OpenVPN) that can use the `nova-vpn.conf` and certificate files without any changes.

==== VPN with Ubuntu 10.04 ====

 1. Install network-manager-openvpn package
 1. Add to /etc/dbus-1/system.d/nm-openvpn-service.conf between `policy root` and `policy default`:
{{{
<policy user=”at_console”>
<allow own=”org.freedesktop.NetworkManager.vpnc”/>
<allow send_destination=”org.freedesktop.NetworkManager.vpnc”/>
</policy>
}}}
 1.#3 With the network configuration in gnome bar, add new VPN conection importing nova-vpn.conf
 1. Edit VPN conection, inside routing options, use this conection only for own resource.
 1. Restart computer to get all changes in.

Now you can activate/deactivate VPN from gnome bar.

==== VPN with Windows ====

 1. Install OpenVPN Connect Client from http://openvpn.net.
 1. Rename nova-vpn.conf to nova-vpn.ovpn.
 1. From Access -> Profiles -> Import from Local File, load the file nova-vpn.ovpn.
 1. To connect, press on new nova-vpn button.

# === Manage multiple credentials ===
# and checking that `NOVA_API`, `NOVA_CERT`, `NOVA_PROJECT`, `NOVA_URL`, `NOVA_USERNAME`,

Cloud Computing at IFCA

1. Introduction

IFCA uses OpenStack for managing the cloud service. You may get access upon request. There are several ways to access the infrastructure, namely:

2. Documentation

The official, up to date documentation can be found in the following link:

Plase refer to that documentation, since it contains the most up to date and accurate documentation for using OpenStack resources.

Important: Do not hesitate in opening a ticket if you notice problems using cloud services.

eciencia: Cloud/Usage (last edited 2017-07-04 11:12:30 by aloga)