welcome: please sign in
location: Diff for "ModellingWaterReservoirs"
Differences between revisions 1 and 2
Revision 1 as of 2016-02-27 17:48:13
Size: 9617
Editor: marco
Comment:
Revision 2 as of 2016-02-27 18:08:52
Size: 2869
Editor: marco
Comment:
Deletions are marked like this. Additions are marked like this.
Line 7: Line 7:

Line 12: Line 14:
The main monitoring platform currently in operation was installed at the Cuerda del Pozo water reservoir in 2008,
and
has been collecting data regularly since 2010, including daily profiling down to 30m. measuring
The main monitoring platform currently in operation was installed at the Cuerda del Pozo water reservoir in Soria (Spain) in 2008, that has been collecting data regularly since 2010, including daily profiling down to 30m. measuring
Line 18: Line 19:
(ask for a login id to marco@ifca.unican.es) (ask for a login id to grid.support [at] ifca.unican.es)
Line 23: Line 24:
Along the last four years the LIFE+ project ROEM+ (see http://www.roemplus-life.eu/ ) has resulted in a large advance in the understanding of the
water reservoir 
Along the last four years the LIFE+ project ROEM+ (see http://www.roemplus-life.eu/ ) has resulted in a large advance in the understanding of the water reservoir, and in particular completing the hydrological simulation using the Delft3D suite, and progressing significantly towards the modeling of algae bloom.
Line 26: Line 26:
== Using eDNA == In 2014 a second monitoring platform was installed at the Cogotas water reservoir in Avila, and the corresponding data is also available.
Line 28: Line 28:
IN PREPARATION (JMdL, 16 Jan 2015) In 2016 we will start the modelling of the Sanabria lake.
Line 30: Line 30:
Initiative to cover wide zones with citizen science
http://michiganlakes.msue.msu.edu/uploads/files/Convention_Presentations_Thursday/Maggie_Kronlein_Early_Detection_of_AIS_Using_eDNA.pdf
This iniatitive is part of the ongoing work at the following international initiatives:
Line 33: Line 32:
Separate between live and dead cells providing eDNA material
http://el.erdc.usace.army.mil/elpubs/pdf/ansrp12-2.pdf
LifeWatch-EGI-Competence Center: Ecological Observatories (see deliverable D6.6)
Line 36: Line 34:
THOMSEN et al 2014
http://www.math.ku.dk/~wiuf/journalWiuf/molEcol21.pdf
INDIGO-Datacloud WP2 on Requirements from Research Communities: the Algae Bloom Case Study (see deliverables D2.1, D2.3, D2.4, and see a short summary here)

The most complete publication of the studies is Dr. Monteoliva PhD Thesis (Feb 2016, in spanish)
[[attachment:tesis-monteoliva.pdf]]
Line 40: Line 40:
Molecular Ecology: PERSPECTIVE
Conservation in a cup of water:
estimating biodiversity and population
abundance from environmental DNA
DAVID M. LODGE, et al.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412215/pdf/mec0021-2555.pdf
The corresponding set of slides are included here [[attachment:slides-monteoliva.pdf]]
Line 49: Line 43:
Ancient and Modern eDNA
PEDERSEN et al.
Other (previous) publications:
Line 52: Line 45:
http://rstb.royalsocietypublishing.org/content/370/1660/20130383
== Monitoring ==

IN PREPARATION (JMdL, 20 Feb 2016)
Line 56: Line 53:
STILL IN PREPARATION (JMdL, 4 Sept 2013) STILL IN PREPARATION (JMdL, 4 Feb 2016)
Line 58: Line 55:
First an introductory article about the interest of open data publication & preservation:
[[attachment:stephaniehampton.pdf]]

[[attachment:cdp.inp]]
The Open Data Preservation portal, available here, is prepared to support the
full data life cycle for the data collected at CdP.
Line 64: Line 59:
[[attachment:cdp.lst]] == Modelling results using Delft3D ==
Line 66: Line 61:
[[attachment:cdp.lsp]]

How NASA Earth missions (satellites) requires a data management plan:
[[attachment:nasadatamanagementplanguide.pdf]]

WE MAY FOLLOW THE EXAMPLE OF LTER in ENVEurope, http:www.enveurope.eu

Check also the [[/Curation|Curation section]].
Results presented by Fernando Aguilar at ...
Line 76: Line 64:
See the recommendations from Data Curation Center (UK) presented at 2013 meeting: == The Team ==
Line 78: Line 66:
http://www.dcc.ac.uk/resources/curation-lifecycle-model Current participants:
Agustin Monteoliva (PhD Env. Sci, ECOHYDROS SL)
Jesus Marco (Research Prof, IFCA)
Alberto (PhD Biology, ECOHYDROS SL)
Fernando Aguilar (Senior Engineer, IFCA)
Jose Augusto Monteoliva (Biologist, ECOHYDROS SL)
Daniel Garcia (Physicist, IFCA)
Tamara (Env. Scientist, ECOHYDROS SL)
Line 80: Line 75:
See the document prepared by Jose Juarez in 2012 [[attachment:datalifecycle.pdf]]

=== TAXONOMY ===

from papers, via OCR:
[[attachment:txocr.pdf]]

GBIF report
[[attachment:gbif.pdf]]





== Access ==

 * [[/Monitoring| Monitoring]].

== The Platform at CdP ==

 * [[/Platform| Platform]].

== The Platform at Cogotas ==

 * [[/Cogotas| Cogotas]].


== Data Formats in use ==

See the document prepared by Jose Juarez in 2012 [[attachment:dataformats.pdf]]

See an example of (corrupt) xml file written in
Escritorio\Dorii\xml (copied by JMdL in Aug2013) [[attachment:CabeceraTrios201087.zip]]


== On site visits ==

 * [[/Visits| Visits]].

== Cianoficeas ==

http://www-cyanosite.bio.purdue.edu/images/images.html

http://oklahomawatersurvey.org/?p=531

En cuanto a los análisis de cianobacterias, se han obtenido los valores de biomasa (en términos de biovolumen expresado en mm3/m3) para cada una de las tres especies principales identificadas en el embalse en el año 2010.

En este sentido, es preciso destacar que la mayor proporción de biovolumen corresponde a ''Anabaena sp.''(83%) seguida por ''Aphanizomenon flos-aquae'' (16%), ambas especies consideradas como especies potencialmente tóxicas. Por su parte ''Woronichinia naegeliana'',presente en un proporción baja (1%), es una especie de cianobacteria sobre la que hay dudas de su toxicidad (ver Willame et al, 2005). Además en Octubre de 2011 fueron detectadas algunas colonias de ''Microcystis flos-aquae'', también catalogada como especie potencialmente tóxica.

Asimismo, en el año 2010 durante el periodo de proliferación estival de cianobacterias, fueron detectadas bajas concentraciones de la toxina cylindrospermopsina, (Quesada, comm.per). Estos resultados están en consonancia con algunas publicaciones publicaciones europeas recientes que destacan el papel de los géneros ''Anabaena'' y ''Aphanizomenon'' como productores de cylindrospermopsina (Brient et at., 2008).

[[attachment:anabaena0010.tif]]; [[attachment:aphanizomenon0001.tif]]; [[attachment:woronochinia0001.tif]]; [[attachment:Microcystis.tif]]

'''DESCRIPCIÓN GENERO ANABAENA'''

Anabena presenta filamentos solitarios, en ocasiones formando agregados. Pueden ser rectos, curvados o enrollados regular o irregularmente.
Las células tienen formas variadas, desde sub-esféricas a cilíndricas. Es habitual la presencia de vesículas de gas.
Los heterocistos aparecen en posiciones intercalares y suelen presentarse en solitario o, excepcionalmente, en pares.
Los acinetos aparecen en solitario o formando hileras de hasta 5 ó 6 acinetos y se sitúan por lo general separados de los heterocistos, generalmente con varias células vegetativas entre ambos, aunque también pueden ser adyacentes, como ocurre en ''A. lemmermanii''.
TOXINAS PRODUCIDAS: anatoxinas, cylindrospermopsina, microcistinas, saxitoxinas.

'''DESCRIPCIÓN GENERO APHANIZOMENON'''

Filamentos rectos y generalmente solitarios o, en algunas especies, formando agregados muy característicos denominados “fascículos”.
Los filamentos suelen estrecharse hacia los extremos, donde aparecen células terminales de formas variadas (cilíndricas, sub-cilíndricas o en forma de flecha) y ligeramente más estrechas que el resto del filamento. Es habitual que dichas células terminales sean total o parcialmente hialinas y de mayor longitud que las células vegetativas.
Las células vegetativas son por lo general más largas que anchas, presentando formas diversas desde elipsoides o en forma de barril hasta cilíndricas.
Los heterocistos se sitúan en posiciones intercalares y pueden ser sub-esféricos, elipsoidales u ovalados.
Los acinetos presentan formas características de cada especie pudiendo ser sub-esféricos, elipsoidales, ovoides o, en algunas especies, cilíndricos, alcanzando en este último caso longitudes varias veces superiores a las de las células vegetativas del filamento al que pertenecen. En cuanto a su posición, también característica de cada especie, pueden presentarse inmediatamente al lado de los heterocistos o separados de ellos por varias células vegetativas y nunca, salvo rotura de filamento, en posición terminal.
TOXINAS PRODUCIDAS: anatoxinas, cylindrospermopsina, microcistinas, saxitoxinas.

'''DESCRIPCIÓN GENERO WORONICHINIA'''

Colonias microscópicas más o menos esféricas, habitualmente compuestas por sub-colonias. Las colonias de la especie Woronichinia naegeliana presentan una forma arriñonada característica.
Las colonias están envueltas en un mucílago fino, que forma pedúnculos en el centro de la colonia.
Las células tienen forma desde sub-esféricas ligeramente elongadas a ovaladas u ovoides. En las colonias maduras, las células se agrupan formando una densa capa en la periferia de la colonia.
En ocasiones, pueden observarse células libres de las colonias que quedan situadas en la periferia de la colonia de la que proceden.
TOXINAS: microcistinas. Hasta el momento sólo existen evidencias parciales de la toxicidad de Woronichinia naegeliana (ver Williame et al, 2005), mientras que en España dicha producción de toxinas no ha podido demostrarse.

'''DESCRIPCIÓN GENERO MICROCYSTIS'''

Colonias microscópicas o, en ocasiones, macroscópicas, flotantes, con formas de esféricas a irregulares, en algunos casos compuestos por sub-colonias , con células densamente agregadas, rodeadas por un mucílago común , fino, más o menos homogéneo.
Las células son esféricas o semiesféricas después de la división, sin envueltas individuales y presentan vesículas de gas visibles al microscopio.
La forma de las colonias, el aspecto del mucílago y el diámetro de las células son las características más importantes en la delimitación de especies dentro de este género.
TOXINAS PRODUCIDAS: microcistinas.

== NEW PROJECT PROGAIA: CO2 AND CH4 MEASUREMENT IN WATER RESERVOIRS ==

 * [[/PROGAIA| PROGAIA]].

== Other Ideas: Underwater Modem ==

 * [[http://grid.ifca.es/wiki/Projects/ULM| ULM]].


== Technical documents ==

 * [[/Technical/Papers |Articles]].
 * [[/Technical/DB |Database]].
 * [[/Filters |Filters]].
 * [[/Technical/Network|Network]].
 * [[/InstallationStatus|Installation Status]]
 * [[/Utils/DBload|DBload Utility]]
 * [[/Profiler|Profiler]]
 * [[/Curation|Curation]]
 * [[/Flex|Flex]]
 * [[/GIS|GIS]]

 * [[/Technical/Backups&Security | Backups & Security]]

 * [[/Technical/DataManagementPlan | Data Management plan]]
 * [[/Technical/PID | PIDs ]]

== Models ==

 * [[/Models/WRF |WRF]]
 * [[/Models/Delft3D |Delft3D]]
 * [[/Models/NetCDF | NetCDF]]

== Meteorology study ==

 * [[/Meteorology study/ Comparison of temperature and wind in Soria, Vinuesa and the dam of Cuerda del Pozo | Comparison of temperature and wind in Soria, Vinuesa and the dam of Cuerda del Pozo]]
 * [[/Meteorology study/ Study of weather prediction in Soria and Vinuesa | Study of weather prediction in Soria and Vinuesa]]
Previous contributors:
Alex Monna (ECOHYDROS SL)
Jose Juarez (IFCA)
Ignacio Coterillo (IFCA)
Maria del Campo (IFCA)

Monitoring and Modelling Water Reservoirs and Lakes

A joint project IFCA - Ecohydros SL

The project on monitoring and modelling water reservoirs and lakes was started in 2005 in the course of the analysis made by the SME company Ecohydros at the Itoiz water reservoir.

The main monitoring platform currently in operation was installed at the Cuerda del Pozo water reservoir in Soria (Spain) in 2008, that has been collecting data regularly since 2010, including daily profiling down to 30m. measuring physical, chemical and biological indicators. The data can be accessed online through the web portal

https://doriie.ifca.es

(ask for a login id to grid.support [at] ifca.unican.es)

The data acquisition and its integration into the e-infrastructure at IFCA was supported by the FP7 EU project DORII (see https://dorii.eu)

Along the last four years the LIFE+ project ROEM+ (see http://www.roemplus-life.eu/ ) has resulted in a large advance in the understanding of the water reservoir, and in particular completing the hydrological simulation using the Delft3D suite, and progressing significantly towards the modeling of algae bloom.

In 2014 a second monitoring platform was installed at the Cogotas water reservoir in Avila, and the corresponding data is also available.

In 2016 we will start the modelling of the Sanabria lake.

This iniatitive is part of the ongoing work at the following international initiatives:

LifeWatch-EGI-Competence Center: Ecological Observatories (see deliverable D6.6)

INDIGO-Datacloud WP2 on Requirements from Research Communities: the Algae Bloom Case Study (see deliverables D2.1, D2.3, D2.4, and see a short summary here)

The most complete publication of the studies is Dr. Monteoliva PhD Thesis (Feb 2016, in spanish) tesis-monteoliva.pdf

The corresponding set of slides are included here slides-monteoliva.pdf

Other (previous) publications:

Monitoring

IN PREPARATION (JMdL, 20 Feb 2016)

Data Life Cycle

STILL IN PREPARATION (JMdL, 4 Feb 2016)

The Open Data Preservation portal, available here, is prepared to support the full data life cycle for the data collected at CdP.

Modelling results using Delft3D

Results presented by Fernando Aguilar at ...

The Team

Current participants: Agustin Monteoliva (PhD Env. Sci, ECOHYDROS SL) Jesus Marco (Research Prof, IFCA) Alberto (PhD Biology, ECOHYDROS SL) Fernando Aguilar (Senior Engineer, IFCA) Jose Augusto Monteoliva (Biologist, ECOHYDROS SL) Daniel Garcia (Physicist, IFCA) Tamara (Env. Scientist, ECOHYDROS SL)

Previous contributors: Alex Monna (ECOHYDROS SL) Jose Juarez (IFCA) Ignacio Coterillo (IFCA) Maria del Campo (IFCA)

eciencia: ModellingWaterReservoirs (last edited 2016-02-29 08:37:30 by aguilarf)